ROBOT TEKNOLOJISI

Ege Üniversitesi Ege MYO Mekatronik Programı

BÖLÜM 7

MEMS:

- Gyroscopes
- Accelerometers
- Magnetometers

Gyroscopes

Intro to Gyroscopes Draper Tuning fork Gyroscope Piezoelectric Gyroscope Absolute Angle Measurement using a Gyroscope Optical Gyroscope and limitations Applications

Intro to Gyroscopes

 Traditional Gyroscopes Working Principle Transition to MEMS Types of Gyroscopes Piezoelectric Vibratory Ring Laser

Laser Ring Gyroscopes

Two signals sent around ring
 Different path lengths create a beat frequency.

Dead Band

- Dead Band -No change in beat frequency for small rotation rates
- Due to frequency "lockin"

r- backscattering amplitude

Scaling Difficulties

Derived Equation for Laser Gyroscope

$$\begin{split} \frac{\psi}{2\pi} &= v_{\text{bias}} + \frac{\Re\Omega}{2\pi} - \frac{c}{2\pi P} \left\langle \frac{r_1(\tau)\mathscr{E}_1}{\mathscr{E}_2} \sin(\psi - \varepsilon_1) \right. \\ &+ \frac{r_2(\tau)\mathscr{E}_2}{\mathscr{E}_1} \sin(\psi + \varepsilon_2) \right\rangle. \end{split}$$

Beat Freq = (M) Angular Velocity - 1/M Dead Band = 1/M²

M = Scaling Factor

Scaling Difficulties

$M = 10^{-4}$

Dead Band = 10⁸ times
bigger
Time varying term larger
Slope of response lower

$$\begin{aligned} \frac{\psi}{2\pi} &= v_{\text{bias}} + \frac{\Re\Omega}{2\pi} - \frac{c}{2\pi P} \left\langle \frac{r_1(\tau)\mathscr{E}_1}{\mathscr{E}_2} \sin(\psi - \varepsilon_1) \right. \\ &+ \frac{r_2(\tau)\mathscr{E}_2}{\mathscr{E}_1} \sin(\psi + \varepsilon_2) \right\rangle. \end{aligned}$$

Change Bandwidth

To lower Dead Band, wavelength could be decreased. Lower slope – Decreased Sensitivity

$$\Omega_L = \frac{r\lambda c}{2A}$$

Draper Tuning Fork Gyro

- The rotation of tines causes the Coriolis Force
- Forces detected through either electrostatic, electromagnetic or piezoelectric.
- Displacements are measured in the Comb drive

Advancements

- Improvement of driftImprovement of
 - resolution

Performance Advantages

No change in performance due to temperature
Lower voltage noise
Stronger signal to noise ratio
Better communication with external devices
Higher sensitivity

Piezoelectric Gyroscopes

Basic Principles

- Piezoelectric plate with vibrating thickness
- Coriolis effect causes a voltage form the material
- Very simple design and geometry

Piezoelectric Gyroscope

- Advantages
 - Lower input voltage than vibrating mass
 - Measures rotation in two directions with a single device
 - Adjusting orientation electronically is possible
- Disadvantages
 - Less sensitive
 - Output is large when $\Omega = 0$

Absolute Angle Measurement

- Bias errors cause a drift while integrating
 Angle is measured with respect to the casing
- The mass is rotated with an initial θ
 When the gyroscopes rotates the mass continues to rotate in the same direction
 Angular rate is measured by adding a driving frequency ω_d

Design consideration

Damping needs to be compensated
 Irregularities in manufacturing
 Angular rate measurement

$$F_{x} = \alpha \left(E - \frac{k_{x}}{2} x^{2} - \frac{m}{2} \dot{x}^{2} - \frac{k_{y}}{2} y^{2} - \frac{m}{2} \dot{y}^{2} \right) \dot{x}$$

$$F_{y} = \alpha \left(E - \frac{k_{x}}{2} x^{2} - \frac{m}{2} \dot{x}^{2} - \frac{k_{y}}{2} y^{2} - \frac{m}{2} \dot{y}^{2} \right) \dot{y}$$

Compensation force

$$F_{x} = \alpha \left(E - \frac{\hat{k}_{x}}{2} x^{2} - \frac{m}{2} \dot{x}^{2} - \frac{\hat{k}_{y}}{2} y^{2} - \frac{m}{2} \dot{y}^{2} \right) \dot{x} + F_{d} \sin(\omega_{d} t)$$

For angular rate measurement

APPLICATIONS

Anti-Lock Brakes
Military Munitions
Inertial Measurement Unit
Gait-Phase Detection Sensor Embedded in a Shoe Insole

Anti-Lock Brakes

Use of Draper Tuning Fork Gyroscope
Yaw Rate Sensor for skid control
Tested under rigorous temperature conditions

Inertial Measurement Unit

 Honeywell acquired Draper's Tuning Fork technologies
 Replaced Ring Laser Gyro in original design
 Developed a low-cost, micro-device capable

of accurately measuring rates and displacements

Munitions Controls

- Draper Laboratories working with Office of Naval Research to develop countermeasureproof munitions
- Tuning Fork Gyroscope used for positioning and rates of displacement
- Gyro allows for inertial movement, bypassing countermeasures

Gait-Phase Detection sensor Embedded in a Shoe Insole
Measures the angular velocity of the foot
Used to activate a functional electrical stimulator attached to the foot.
Over 96% accuracy

Conclusion

